skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sokolov, Alexei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organic ionic plastic crystals (OIPCs) are emerging as promising electrolyte materials for solid-state batteries. However, despite the fast ionic diffusion, OIPCs exhibit relatively low DC conductivity in solid phases caused by strong ion-ion correlations that suppress charge transport. To understand the origin of this suppression, we performed a study of ion dynamics in the OIPC 1-Ethyl-1-methylpyrrolidinium bis (trifluoromethyl sulfonyl) imide [P12][TFSI] utilizing dielectric spectroscopy, light scattering, and Nuclear Magnetic Resonance diffusometry. Comparison of the results obtained in this study with the published earlier results on an OIPC with a completely different structure (Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate [P1,2,2,4][PF6]) revealed strong similarities in ion dynamics in both systems. Unlike DC conductivity, which may drop more than ten times between melted and solid phases, diffusion of anions and cations remains high and does not show strong changes at phase transition. The conductivity spectra in the broad frequency range demonstrate unusual shapes in solid phases with an additional step separating fast local ion motions from suppressed long-range charge diffusion controlling DC conductivity. We suggested that in solid phases, anions and cations can jump only between the specific ion sites defined by the crystalline structure. These constraints lead to strong cation-cation and anion-anion correlations strongly suppressing long-range charge transport. 
    more » « less
    Free, publicly-accessible full text available March 28, 2026
  2. Abstract The COVID-19 pandemic has profoundly impacted global economies and healthcare systems, revealing critical vulnerabilities in both. In response, our study introduces a sensitive and highly specific detection method for cDNA, leveraging Luminescence Resonance Energy Transfer (LRET) between upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs), and achieves a detection limit of 242 fM for SARS-CoV-2 cDNA. This innovative sensing platform utilizes UCNPs conjugated with one primer and AuNPs with another, targeting the 5′ and 3′ ends of the SARS-CoV-2 cDNA, respectively, enabling precise differentiation of mismatched cDNA sequences and significantly improving detection specificity. Through rigorous experimental analysis, we established a quenching efficiency range from 10.4 % to 73.6 %, with an optimal midpoint of 42 %, thereby demonstrating the superior sensitivity of our method. Our work uses SARS-CoV-2 cDNA as a model system to demonstrate the potential of our LRET-based detection method. This proof-of-concept study highlights the adaptability of our platform for future diagnostic applications. Instrumental validation confirms the synthesis and formation of AuNPs, addressing the need for experimental verification of the preparation of nanomaterial. Our comparative analysis with existing SARS-CoV-2 detection methods revealed that our approach provides a low detection limit and high specificity for target cDNA sequences, underscoring its potential for targeted COVID-19 diagnostics. This study demonstrates the superior sensitivity and adaptability of using UCNPs and AuNPs for cDNA detection, offering significant advances in rapid, accessible diagnostic technologies. Our method, characterized by its low detection limit and high precision, represents a critical step forward in developing next-generation biosensors for managing current and future viral outbreaks. By adjusting primer sequences, this platform can be tailored to detect other pathogens, contributing to the enhancement of global healthcare responsiveness and infectious disease control. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026
  3. Strong quantum correlated sources are essential but delicate resources for quantum information science and engineering protocols. Decoherence and loss are the two main disruptive processes that lead to the loss of nonclassical behavior in quantum correlations. In quantum systems, scattering can contribute to both decoherence and loss. In this work, we present an experimental scheme capable of significantly mitigating the adverse impact of scattering in quantum systems. Our quantum system is composed of a two-mode squeezed light generated with the four-wave-mixing process in hot rubidium vapor and a scatterer is introduced to one of the two modes. An integrating sphere is then placed after the scatterer to recollect the scattered photons. We use mutual information between the two modes as the measure of quantum correlations and demonstrate a 47.5% mutual information recovery from scattering, despite an enormous photon loss of greater than 85%. Our scheme is the very first step toward recovering quantum correlations from disruptive random processes and thus has the potential to bridge the gap between proof-of-principle demonstrations and practical real-world implementations of quantum protocols. Published by the American Physical Society2024 
    more » « less
  4. The intrinsic fluorescence of bacterial samples has a proven potential for label-free bacterial characterization, monitoring bacterial metabolic functions, and as a mechanism for tracking the transport of relevant components through vesicles. The reduced scattering and axial confinement of the excitation offered by multiphoton imaging can be used to overcome some of the limitations of single-photon excitation (e.g., scattering and out-of-plane photobleaching) to the imaging of bacterial communities. In this work, we demonstrate in vivo multi-photon microscopy imaging of Streptomyces bacterial communities, based on the excitation of blue endogenous fluorophores, using an ultrafast Yb-fiber laser amplifier. Its parameters, such as the pulse energy, duration, wavelength, and repetition rate, enable in vivo multicolor imaging with a single source through the simultaneous two- and three-photon excitation of different fluorophores. Three-photon excitation at 1040 nm allows fluorophores with blue and green emission spectra to be addressed (and their corresponding ultraviolet and blue single-photon excitation wavelengths, respectively), and two-photon excitation at the same wavelength allows fluorophores with yellow, orange, or red emission spectra to be addressed (and their corresponding green, yellow, and orange single-photon excitation wavelengths). We demonstrate that three-photon excitation allows imaging over a depth range of more than 6 effective attenuation lengths to take place, corresponding to an 800 micrometer depth of imaging, in samples with a high density of fluorescent structures. 
    more » « less
  5. Abstract The transport of protons is critical in a variety of bio- and electro-chemical processes and technologies. The Grotthuss mechanism is considered to be the most efficient proton transport mechanism, generally implying a transfer of protons between ‘chains’ of host molecules via elementary reactions within the hydrogen bonds. Although Grotthuss proposed this concept more than 200 years ago, only indirect experimental evidence of the mechanism has been observed. Here we report the first experimental observation of proton transfer between the molecules in pure and 85% aqueous phosphoric acid. Employing dielectric spectroscopy, quasielastic neutron, and light scattering, and ab initio molecular dynamic simulations we determined that protons move by surprisingly short jumps of only ~0.5–0.7 Å, much smaller than the typical ion jump length in ionic liquids. Our analysis confirms the existence of correlations in these proton jumps. However, these correlations actually reduce the conductivity, in contrast to a desirable enhancement, as is usually assumed by a Grotthuss mechanism. Furthermore, our analysis suggests that the expected Grotthuss-like enhancement of conductivity cannot be realized in bulk liquids where ionic correlations always decrease conductivity. 
    more » « less
  6. Organic ionic plastic crystals (OIPCs) appear as promising materials to replace traditional liquid electrolytes, especially for use in solid state batteries. However, OIPCs show low conductive properties relative to liquid electrolytes, which presents an obstacle for their widespread applications. Recent studies revealed very high ion mobility in solid phases of OIPCs, yet the ionic conductivity is significantly (~100 times) suppressed because of strong ion-ion correlations. To understand the origin of the ion-ion correlations in OIPCs, we employed broadband dielectric spectroscopy, light scattering and NMR diffusion measurements in liquid and solid phases of Hexafluorophosphate - Diethyl(methyl)(isobutyl)phosphonium [PF6][P1,2,2,4]. The results confirmed significant decrease in conductivity of solid phases of this OIPC through ion-ion correlations. Surprisingly, these ionic correlations suppress charge displacement on rather long time scales comparable to the time of ion diffusion on the ~1.5 nm length scale. We ascribe the observed phenomena to momentum conservation in motion of mobile anions and emphasize that microscopic understanding of these correlations might enable design of OIPCs with strongly enhanced ionic conductivity. 
    more » « less
  7. The structural design of self-healing materials determines the ultimate performance of the product that can be used in a wide range of applications. Incorporating intrinsic self-healing moieties into puncture-resistant materials could significantly improve the failure resistance and product longevity, since their rapidly rebuilt bonds will provide additional recovery force to resist the external force. Herein, we present a series of tailored urea-modified poly(dimethylsiloxane)-based self-healing polymers (U-PDMS-SPs) that exhibit excellent puncture-resistant properties, fast autonomous self-healing, multi-cycle adhesion capabilities, and well-tunable mechanical properties. Controlling the composition of chemical and physical cross-links enables the U-PDMS-SPs to have an extensibility of 528% and a toughness of 0.6 MJ m −3 . U-PDMS-SPs exhibit fast autonomous self-healability with 25% strain recovery within 2 minutes of healing, and over 90% toughness recovery after 16 hours. We further demonstrate its puncture-resistant properties under the ASTM D5748 standard with an unbreakable feature. Furthermore, the multi-cycle adhesive properties of U-PDMS-SPs are also revealed. High puncture resistance (>327 mJ) and facile adhesion with rapid autonomous self-healability will have a broad impact on the design of adhesives, roofing materials, and many other functional materials with enhanced longevity. 
    more » « less